OAI Existing Work (LTE)
基于OAI的MEC研究(计划)
OAI(OpenAirInterface)由OSA倡导发起,旨在利用通用计算平台搭建一个可用于科研实验和特定场景小规模覆盖的开源蜂窝网络系统。OAI依据3GPP的LTE/5G标准开发实现,在此基础上实现的MEC平台也以OAI开发版本的协议特性为基础。
结合OAI系统开发的状态和实验室内部研究,建议基于OAI的MEC研究可以计划从三个方面入手:
开放RAN侧能力
定义RAN侧能力开放的接口数据帧结构,参考O-RAN的PHY/IP/TCP/TLS/HTTPS/JSON,统一交互的数据格式;
调研、开发实现可供使用的RAN侧信息,利用OAI平台的开源特点分类定义接口类别;
探索“数据下行”能力,研究MEC平台输出信息参与RAN侧调度处理的可行性。
强化平台网络能力
搭建以ARP、iptables、DNS为代表的MEC路由系统;
搭建以Docker、VMs、VPN为代表的MEC虚拟机和虚拟网关;
搭建以Openstack、SDN为代表的虚拟平台。
拓展边缘应用实现
结合ML技术的RAN侧数据(视频、图像、语音、位置信息、无线电)分析应用;
结合TCP/IP新技术(NEW IP、Multi-TCP、QUIC)快速验证无线通信网络性能;
结合Slicing实现的端到端链路资源管理和调度优化。
MEC平台部署(草稿)
部署形式
独立的MEC硬件
我们需要在实验室OAI平台之中添加一台MEC服务器,通过网线分别连接基站服务器和核心网服务器。
All in One硬件
我们将MEC平台相关的各个模块(eNB、MEC、hss、mme、spgw等)部署在同一台服务器上。
与当前OAI平台兼容的开发模式
尝试在基站服务器上加入一个分流模块,开启后可以将相关的数据包转发到MEC服务上。
基础平台
IP与转发工具
为MEC服务提供IP支持,面向不同类型服务的路由。
iptables、route命令已经相关的DNS服务(暂无明显必要)。
服务形态
研究确定服务基于的操作系统、虚拟机、容器,//适合独立开发部署//。
消息交互
面向需要RAN侧信息输入/输出的消息交互格式。
参考PHY/IP/TCP/HTTPS/JSON、基于TCP socket的传输。
边缘应用
按照计划安排确定应用的部署环境需求。
文档教程
设计一致的MEC平台开发流程文档。
Slicing
团队工作调研
OAI Workshop Fall 2019
OAI-based End-to-End Network Slicing
State Key Laboratory of Integrated Service Networks, Xidian University, Xian, Shaanxi Province, 710071, P. R. China
China Mobile Communication Research Institute, Beijing, 100053, P. R. China
Network slicing is a key technology of 5G network to realize flexible customization for various services based on Network Function Virtualization and Software Defined Network. In this paper, we discuss end-to-end network slicing in terms of non-standalone 5G standard, where eMBB and uRLLC scenarios are supported using 4G core network. Firstly, we present eMBB and uRLLC slices at the user plane respectively. To reduce end-to-end delay in the uRLLC slice, Mobile Edge Computing is introduced. Secondly, both eMBB and uRLLC slices share the same control plane at core network. Finally, we establish a testbed based on the open source software of OAI. Experimental results demonstrate that our proposed scheme can increase the downlink rate for eMBB slice and reduce the delay for uRLLC slice.
Implementation of OpenAirInterface control software for 4G network
Department of Computer Science and Engineering, Kyunghee University, Yongin, Republic of Korea
Due to the development of mobile communication, user demand and traffic increased, and various services were produced. With existing 3G networks, it was hard to demand these services and users' demand. Therefore, the 4G network has been developed. As evolving into 4G networks, much experimental and development software have been created. OAI is a hardware and software platform for 4G networks that can be used for various experiments and developments. In this paper, we have implemented a system to solve the inefficiencies in the configuration of 4G networks created by combining SDN technology and OAI. This makes it possible to set up and monitor eNodeBs and UEs. This paper consists of two parts. The system structure part deals with the structure of the implemented system. The next section deals with the actual operation of the implemented system and how it is configured and monitored.
Design and Integration of Fiber Fronthaul with Soft PHY for OAI-BASED RAN
Department of Computer Science, Nation Chiao Tung University, Hsinchu, Taiwan
For high-speed communications need, Fronthaul, a new mobile architecture related to RAN-based networks, has been widely used in 4G/5G mobile network. Compared with the traditional architecture of the baseband station, Fronthaul is divided into baseband unit (BBU) and remote radio head (RRH). Due to the separation, the interface between BBU and RRH requires more effort to handle the data rate transmission. In this paper, we propose the fiber Fronthaul to achieve the high bandwidth requirement. The BBU includes the SoftPHY OAI running on Intel I7-6700 CPU and the data collector implemented by Xilinx VC707. The RRH is implemented by Xilinx ZC706. And the RF front-end is implemented by Analog Devices ADFMCOMMS5-EBZ. The interface between the SoftPHY OAI and the data collector is PCIe, and the interface between the data collector and the RRH is optical fiber. It is important that we design the synchronization scheme to synchronize and calibrate the real-time clock (RTC) of different RRH. Therefore, the proposed fiber Fronthaul with SoftPHY OAI can achieve the long distance, stability and high speed transmission.
O-RAN & MEC
区别与联系
标的:目前看来,O-RAN朝着与5G标准的方向在推进,MEC则是希望打造成一个行业重要的增长极,以平台服务的方式迭代。
对象:O-RAN面向RAN开展智能调度,提升RAN侧无线通信效率和能力;MEC面向服务,成为边缘侧信息平台。
协议:O-RAN使用了与5G网元间通信一致的HTTPS协议传输消息(新增接口);MEC作为服务平台不指定应用层协议。
数据:目前来看,O-RAN使用的JSON格式适合小数据包密集发送;MEC面临的可能场景包括了大规模流量的卸载和处理。
O-RAN & MEC功能:O-RAN侧重控制(Control),MEC侧重计算(Computing)。
CM O-RAN
应用
输入信息
时间戳信息
用户信息:IMEI、MAC地址、IP地址
位置信息:由定位算法取得的位置坐标
设备状态信息:信号强度、速率等级
服务应用信息:TCP/IP协议头特征、吞吐率情况
工作模式
用户活跃时间图
时间戳+用户信息+服务应用
动态展示用户使用不同服务的时间线
用户活跃位置图
时间戳+用户信息+位置信息+服务应用
展示不同位置的应用偏好
服务能力情况图
位置信息+设备状态+服务应用
模拟一个具有偏好习惯的场景(例如在某个位置的视频业务可能性较高),查看此位置的设备信号状态情况
MEC Video Task
相关文献
Multi-Access Edge Computing Enhanced Video Streaming: Proof-of-Concept Implementation and Prediction/QoE Models
MEC-Enhanced Video Streaming
CQI
Content Popularity Prediction
Video Quality Prediction
A Fast DVC to HEVC Transcoding for Mobile Video Communication
Mobile Panoramic Video Maps Over MEC Networks
Video rate adaptation and traffic engineering in mobile edge computing and caching-enabled wireless networks
Last updated
Was this helpful?